Near Ultraviolet Absorption Spectrum of Pyridine-d₅ Vapor

Yoshinori Hasegawa

College of General Education, Tohoku University, Kawauchi, Sendai (Received March 2, 1971)

The near ultraviolet absorption spectrum of pyridine- d_5 vapor due to $n-\pi^*$ transition was measured and analyzed. The origin is at 34951 cm⁻¹ and higher than that of pyridine-h₅ by 182 cm⁻¹. The ground-state frequencies 582 and 1019 cm⁻¹ and their counterparts of 511 and 953 cm⁻¹ in the upper state dominate the progressions in the spectrum. Besides the above frequencies, several active frequencies were obtained.

The near ultraviolet absorption spectrum of pyridine h_5 vapor has been observed by Henri and Angenot¹⁾ and by Sponer and Stücklen.2) Assuming that the electronic transition is polarized in the molecular plane perpendicular to a twofold axis passing through the nitrogen atom, Sponer and Stücklen have assigned many bands in the region to the progressions with several totally and nontotally symmetric frequencies. In the spectrum of Sponer and Stücklen, the origin and the progressional members with the totally symmetric frequencs 542 cm⁻¹ have been observed to belong to the parallel bands of an oblate symmetric top. The electronic transition has, therefore, been assigned to the A_1-B_1 transition with the electronic transition moment perpendicular to the molecular plane.3) Although Sponer and Stücklen have reported on several fundamental frequencies in the ground and upper states, ambiguity remains on the character of the vibrations.

The infrared and Raman spectra of pyridine and deuteropyridines and their vibrational analyses have been extensively studied by many workers.3-7) Their works provide us with much information on the $n-\pi^*$ absorption spectrum of pyridine.

The purpose of the present study is to analyze the $n-\pi^*$ absorption spectrum of pyridine- d_5 vapor in relation to that of pyridine- h_5 vapor.

Experimental

The spectrum was photographed in the second order of a Shimadzu GE-100 Ebert type grating spectrograph with a 500 W xenon arc lamp as light source. The reciprocal dispersion was 4.1 Å/mm. A Toshiba UV-D2 filter was used to eliminate all radiation in the other orders. Fuji spectroscopic plates were used. The wavelengh calibration was made by an iron arc. The absorption cells with quartz windows had light path lengths 20 and 60 cm. The 20 cm cell had a side arm in which the sample was kept during exposures at temperatures varying from -16°C to room temperature. The 60 cm cell into which the sample was introduced was helically wound with nichrome wire over an asbestos sheet and covered with an asbestos sheet. The

cell temperature could be regulated between room temperature and 50°C.

The 99% pure pyridine- d_5 was a Merk product. The sample was twice distilled in a vacuum and then introduced into the absorption cell in a vacuum. The spectrum of pyridine- d_5 showed no spectrum of pyridine- h_5 .

Results and Discussion

The $n-\pi^*$ absorption bands of pyridine- d_5 vapor observed at -16° C appear in the wavelength region 2860—2620 Å. The bands have narrow line-like shapes in the longer wavelength region, but become diffuse in the shorter wavelengths and finally are submerged in a strong continuum. The strongest band at 34951 cm⁻¹ in the longest wavelength region is taken as the origin, which is shifted by 182 cm⁻¹ toward the blue compared

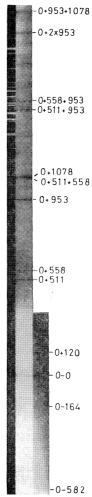


Fig. 1. Absorption spectrum of pyridine- d_5 vapor.

V. Henri and P. Angenot, J. de Chim. Phys., 33, 641 (1936).

²⁾ H. Sponer and H. Stücklen, J. Chem. Phys., 14, 101 (1946).

³⁾ K. K. Innes, J. P. Byrne, and I. G. Ross, J. Mol. Spectrosc., 22, 125 (1967).

⁴⁾ L. Corrsin, B. J. Fax, and R. C. Lord, J. Chem. Phys., 21, 1170 (1953).

⁵⁾ J. K. Wilmshurst and H. J. Bernstein, Can. J. Chem., 35,

⁶⁾ D. B. Cunliffe-Jones, Spectrochim. Acta, 21, 747 (1965).
7) D. A. Long, F. S. Murfin, and E. L. Thomas, Trans. Faraday Soc., 59, 12 (1963).

Table 1. Absorption bands of pyridine- $d_{\mathbf{5}}$

Wave number	Sepa- ration from origin	Intensity		Assignment	Wave number	Sepa- ration from origin	Intensity		Assignment	
		tube 6	60 cm		34710	-241	w		0-1325+1078	
			40°C		34726	-225	s	w	0-1019+802	
33353	1598	w		0 - 582 - 1019					0 - 164 - 56	
33473	1478	w		0-582-1019+120	34743	-208	s	w		
33544	-1407	w		0 - 582 - 828	34764	-187	S	w	0 - 582 + 558 - 164	
33616	-1335	w		0 - 1335					0-164-20	
33626	-1325	w		0-1325					0 101 40	
33692	-1259	vw		0 - 582 - 680			tube 60) cm 2	20 cm	
33719	-1232	vw					20°C -			
33788	-1163	s	m	$0-2 \times 582$	34783	-168	w		0 - 680 + 511	
33853	-1098	w		$0-2 \times 582 + 62$	34787	-164	s		0-164	
33876	— 1075	w		0 - 1019 - 56	34803	-148	vw			
33906	-1045	m		$0-2\times582+120$	34821	-130	m		0 - 164 + 34	
33932	-1019	s	m	0-1019	34826	-125	w		0-680+558	
33938	-1013	-	vw		34832	-119	w		3 330 333	
33967	-984		vw	0 - 1019 + 34	34866	-85	vw			
33993	-958		vw	0-958	34882	–69	m		0-582+511	
33333	- 550		* **	0-1019+62	34885	66	m		0-302+311 0-1019+953	
34053	-898		m	0-1019+120	34895	56	vs		0-1019+353 $0-56$	
51033	030		111	0-582-(316)	34911	-30 -40	vs m		0-30 $0-2\times 20$	
34060	-891		vw	0-891	34931	-20	S		$0-2 \times 20$ 0-20	
34089	-862		vw	0-1019+120+34	37331	40	ð		0-20 $0-582+558$	
34003	002		V VV	0-582-(316)+34	34951	0	VS	g	0-302+330 $0-0$	
34123	-828		wd	0-302-(310)+31 0-828	34985	34	VS	S	0-3 0+34	
34143	-040		wu	0-320 $0-1335+511$	35013	62		vw	0+62	
94145	-806			0-1325+511	35073	120		W	0+62 0+120	
34145 34186	— 765		vw	0-765	33071	120		m	0+120 0-680+802	
			vwd		25197	176			0-080+802	
34202	-749		w	0-582-680+511	35127	176		vw		
34205	746		S	0-582-164	35153	202		VW		
34271	-680		S	0-680	35160	209		vw		
34312	-639		S	0-582-56						
34329	-622		w	0-622			1	tube 20		
34338	-613		wd	0 500	0	244		-16°C		
34369	-582		S	0-582	35192	241		vw	$0+2\times 120$	
34403	-548		vwd	0 - 582 + 34	35222	271		w	0 - 680 + 953	
34431	-520		w	0-520	35252	301		w		
.	=00			0-582+62	35318	367		vw	0 - 582 + 953	
34445	506		w	0-1019+511	35327	376		vw		
			_		35445	494		W	0-582+1078	
		tube 60			35462	511		S	0+511	
		$40^{\circ}\mathrm{C}$			35509	558		S	0+558	
34488	-463	S	m	0 - 582 + 120	35581	630		w	0+511+120	
34492	-459	vw		0 - 1019 + 558	35622	671		m	0+558+120	
34517	-434	vw			35732	781		w	0 - 680 + 511 + 953	
34526	-425	m		0 - 582 + 120 + 34	35739	788		w	0+953-164	
34545	-406	vw			35753	802		vw	0 + 802	
34572	-379	w		0 - 1335 + 953	35770	819		w		
34580	-371	$\mathbf{w}\mathbf{d}$		0 - 371	35783	832		w	0 - 680 + 558 + 953	
				0 - 1325 + 953	35904	953		VS	0+953	
34590	-361	w			35977	1026		vw	$0+2 \times 511$	
34 6 03	-348	w			35982	1031		vw		
34621	-330	s		$0-2 \times 164$	35999	1048		vw		
34635	-316	vs	s	0-(316)	36021	1070		vs	0+511+558	
				0 - 828 + 511	36029	1078		vs	0+1078	
34668	-283	s	m	0 - (316) + 34	36166	1215		w		
				0 - 828 + 511 + 34	36183	1232		w		
					36197	1246				

Table 1 (Continued)

Wave number	Sepa- ration from origin	Intensity	Assignment	Wave number	Spea- ration from origin	Intensity	Assignment	
36260	1309	m	0+511+802	37413	2462	md	$0+558+2\times953$	
36410	1459	vs	0+511+953	37474	2523	wd		
36460	1509	vsd	0+558+953	37507	2556	\mathbf{wd}		
36539	1588	w	0+511+1078	37560	2609	vwd		
36544	1593	w		37617	2666	vwd		
36727	1776	m	$0 - 680 + 558 + 2 \times 953$	37665	2714	$\mathbf{w}\mathbf{d}$	$0+802+2\times953$	
36854	1903	s	$0+2 \times 953$	37806	2855	\mathbf{md}	$0+3 \times 953$	
36926	1975	wd	$0+2\times511+953$	37835	2884	vwd		
36975	2024	vsd	0+953+1078	37888	2937	vwd	$0+2\times511+2\times953$	
37216	2265	wd	0+511+802+953	37928	2977	md	$0+511+558+2\times953$	
37358	2407	sd	$0+511+2\times953$	38176	3225	\mathbf{wd}	$0+511+802+2\times953$	

Notes: Intensities are roughly estimated from plates.

Abbreviations: v=very, w=weak, m=moderate, s=strong, and d=diffuse.

Table 2. Active frequencies of pyridine- h_5 and pyridine- d_5 (cm⁻¹)

		Pyridine- h_5			${\rm Pyridine}\text{-}d_5$		
Symmetry	Mode 1	IR, Raman ^a) 992	Ground ^{b)} state	Excited ^{b)} state 968	IR, Raman ^a)	Ground state	Excited state
a_1					962	958	
_	6a	605	601	542	582	582	511
	9a	1218	1218		887	891	
	12	1029	1031	995	1006	1019	953
	18a	1068	1063		823	828	
	19a	1482	1491		1340	1335	
b_1	6b	652	649		625	622	
-	14	1375	1372		1322	1325	1078
	15	1148	1141		(887)		
a_2	10a	886	891		690	680	558
b_2^-	4	$675^{c_{)}}$	676?		$(625)^{d_1}$		
-	5	942	945		$762^{(d)}$	765	
	11	703 ^{c)}	712		530	520	
	16b	405	405		371	371	

- a) The values taken from Corrsin et al.4)
- b) The values by Sponer and Stücklen.2)
- c) Cunliffe-Jones has assigned the frequencies 700 and 746 cm⁻¹ to the modes 4 and 11, respectively.⁶⁾
- d) Wilmshurst and Bernstein have assigned the frequencies 567 and 823 cm⁻¹ to the modes 4 and 5, respectively.⁵⁾

with that of pyridine- h_5 .²⁾ With the rise of temperatures, many line-like bands appear in the longer wavelength side of the origin.

Table 1 represents our measurements with visually estimated intensities and assignments of the bands. Table 2 shows the active frequencies of the pyridine- d_5 spectrum together with those of the pyridine- h_5 spectrum.²⁾

The interval 582 and 1019 cm⁻¹ are most prominent in the longer wavelength region of the origin. These are identical with the frequencies 582 and 1006 cm⁻¹ assigned to the totally symmetric in-plane ring bending modes 6a and 12, respectively, in the vibrational spectra.^{4,5}) The frequency 582 cm⁻¹ corresponds to the prominent frequency 601 cm⁻¹ in the pyridine- h_5 spectrum and has a counterpart of 511 cm⁻¹ (542 cm⁻¹ in pyridine- h_5) in the upper state. The frequency 1019

cm⁻¹ has a counterpart of 953 cm⁻¹ in the upper state. The frequencies 1031 and 995 cm⁻¹ in the ground and upper states, respectively, in the pyridine- h_5 spectrum correspond to the frequencies.

The separation $680 \,\mathrm{cm^{-1}}$ of the strong hot band at $34271 \,\mathrm{cm^{-1}}$ from the origin might coincide with a frequency of $690 \,\mathrm{cm^{-1}}$ in the vibrational spectra. This frequency is assigned to the out-of-plane hydrogen bending mode 10a with species a_2 . It may be expected that the bands caused by a nontotally symmetric vibration of species a_2 show a perpendicular type.⁸⁾ The shape of the band is, however, line-like and can not be distinguished from those of the parallel bands. The frequency $680 \,\mathrm{cm^{-1}}$ corresponds to $891 \,\mathrm{cm^{-1}}$ in the pyridine- h_5 spectrum and has a counterpart of

⁸⁾ A. C. Albrecht, J. Chem. Phys., 33, 156 (1960).

558 cm⁻¹ (probably 672 cm⁻¹ in pyridine- h_5) in the upper state.

Separations 371, 520, 622, 765, and 828 cm⁻¹ of weak bands to the red from the origin coincide with the respective frequencies in the vibrational spectra as shown in Table 2 and assigned as in Table 1.

Separations 891, 958, 1325, and 1335 cm⁻¹ of very weak bands to the red from the origin are identical with the respective frequencies in the vibrational spectra and assigned as in Table 1.

Separation $316~\rm cm^{-1}$ of the strong hot band at $34635~\rm cm^{-1}$ from the origin might coincide with the frequency $329~\rm cm^{-1}$ in the vibrational spectra. The analogous band separated from the origin in the pyridine- h_5 spectrum by $378~\rm cm^{-1}$ is, however, extremely weak. Thus ambiguity of the band remains.

The most characteristic feature of the pyridine- d_5 spectrum is the prominence of frequency 953 cm⁻¹ in the upper state. Vibration 953 cm⁻¹ makes overtone bands with three members and dominates progressions in combination with other vibrations. In the pyridine- h_5 spectrum, the 542 cm⁻¹ progression starting from the origin appears up to the fourth member, but the ana-

logue of $511\,\mathrm{cm^{-1}}$ in pyrinine- d_5 has only two progressional members.

The other fundamental frequencies in the upper state are 558 and 1078 cm⁻¹. The frequency 558 cm⁻¹ seems to make no overtone and is a counterpart of the ground-state frequency 680 cm⁻¹. The frequency 1078 cm⁻¹ probably corresponds to the ground-state frequency 1325 cm⁻¹.

On both sides of the origin, satellites appear with separations -164, -56, -40, -20, 34, 62, and 120 cm⁻¹. The satellite band separated from the origin by 120 cm⁻¹ corresponds to the band separated from the origin by 139 cm⁻¹ in the pyridine- h_5 spectrum, which disappears from the spectrum in solid solution at low temperature.⁹⁾ This satellite might be due to a v-v transition of a low frequency vibration. The other satellites might be due to v-v transitions of some vibrations.

The author is particularly indebted to Prof. H. Azumi for use of the spectrograph.

⁹⁾ Cf. Ref. 3.